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Abstract. The existing cosegmentation methods use intra-group infor-
mation to extract a common object from a single image group. Observing
that in many practical scenarios there often exist multiple image groups
with distinct characteristics but related to the same common object, in
this paper we propose a multi-group image cosegmentation framework,
which not only discoveries intra-group information within each image
group, but also transfers the inter-group information among different
groups so as to more accurate object priors. Particularly, we formulate
the multi-group cosegmentation task as an energy minimization prob-
lem. Markov random field (MRF) segmentation model and dense cor-
respondence model are used in the model design and the Expectation-
Maximization algorithm algorithm (EM) is adapted to solve the opti-
mization. The proposed framework is applied on three practical scenar-
ios including image complexity based cosegmentation, multiple training
group cosegmentation and multiple noise image group cosegmentation.
Experimental results on four benchmark datasets show that the pro-
posed multi-group image cosegmentation framework is able to discover
more accurate object priors and significantly outperform state-of-the-art
single-group image cosegmentation methods.

1 Introduction

Cosegmentation automatically extracts common objects from multiple images
by forcing the segments to be consistent, which can be used in many applica-
tions, such as image classification [1] , image retrieval [2] and object recognition
[3]. Such a task is extremely challenging when dealing with large variations
of common objects and the interferences of complex backgrounds. In the past
several years, many cosegmentation methods have been proposed, which usual-
ly add foreground consistency constraint into traditional segmentation models
to achieve the common object extraction, such as graphcut based cosegmen-
tation [2, 4–6], random walker based cosegmentation [7], active contours based
cosegmentation [8], discriminative clustering based cosegmentation [9], and heat
diffusion based cosegmentation [10].

Although these methods have been successfully used in some scenarios, they
mainly focus on the cosegmentation of a single image group, where intra-group
information is discovered to achieve the common object extraction. However, in
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many other scenarios, multiple image groups with different characteristics but
related to the same common object can be formed or already exist. For example,
1) for a given image group with large number of images, we can divide them into
several subgroups such as low-complexity image group and complex image group.
2) Many training datasets for one general object often contain image groups of
multiple classes, such as multiple types of “face” in face recognition and multiple
kinds of “bird” species in image classification. 3) The Internet images of an ob-
ject (e.g., a landmark) may be retrieved from several web engines such as Google
and Flicker, which naturally results in the generation of several image groups
with distinct characteristics according to the searching engines. The common
existence of image groups naturally brings up the questions: how to do coseg-
mentation when there exist multiple image groups with distinct characteristics?
how to use the segmentation of one group to help another group?.

There are two straightforward solutions: one is to cosegment each image
group independently; the other is to merge all the image groups into one and then
use the existing cosegmentation technique to solve it. The problem with such
straightforward methods is that they ignore the subtle prior information among
image groups, which could be very helpful for cosegmentation as illustrated in
the following examples.

– The in-between group information can provide more accurate object prior
and make the model more robust to the background interferences. For ex-
ample, in the top row of Fig. 1 (a), Shiny Cowbird has very smooth texture
(just black), which can be easily cosegmented within this group even with
complex background. Then, its segmentation results can be used to help the
cosegmentation of Swainson Warbler group that has complicated texture,
as shown in the bottom row of Fig. 1(a).

– Multiple group cosegmentation can simplify the cosegmentation in terms of
the object prior generation and computational cost. For example, based on
some image complexity analysis, we can classify the image group into two
subgroups: simple image group and complex image group, as shown in Fig.
1(b). The object prior can be easily and accurately generated from the simple
image group rather than all images. In addition, since the size of the simple
image group is smaller than the original one, it will also reduce the time cost
of the cosegmentation significantly.

– Multiple group cosegmentation might be able to help on removing noise
images. For example, the images of an object retrieved from Google and
Flicker are likely to contain independent noise images. By comparing among
different groups, we can easily filter out the noise images.

In this paper we propose a framework for multi-group image cosegmentation
which utilises the in-between group information to improve the cosegmentation
performance, and can be used in many applications, such as image classification,
object detection and object recognition. Particularly, we formulate multi-group
image cosegmentation as an energy minimization problem, where our overall en-
ergy function consists of three terms: traditional single image segmentation term
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(a) 

(b) 

Fig. 1. Examples of the usefulness of inter-group information in cosegmentation. (a):
two subspecies groups of bird (with smooth texture and complex texture, respectively).
(b): simple background group and complex background group generated from a given
image group.

that enforces foreground and background to be smooth and discriminatory, tradi-
tional single group term that enforces the consistency between image pairs from
the same group, and a novel multiple group term that enforces the consistency
between image pairs from different image groups through transferring structure
information between image groups. We also introduce hidden variables in the en-
ergy function to select useful image pairs within a group and across the groups.
The proposed model is finally minimized by the Expectation-Maximization algo-
rithm (EM) algorithm with some adaptations and customizations. Furthermore,
we apply our framework on three practical scenarios including image complex-
ity based cosegmentation, multiple training group cosegmentation and multi-
ple noise image group cosegmentation. Experimental results on four benchmark
datasets show that our proposed multi-group segmentation significantly outper-
forms the existing methods in terms of both quantitative intersection-over-union
(IOU) values and visual quality.

2 Related Work

The existing cosegmentation methods focus on segmenting common object from
a group of images, which is usually designed by adding the foreground consis-
tency constraint into traditional segmentation models, i.e.

E =
∑
i

Eimage(Ii) +
∑
(i,j)

Eglobal(Ii, Ij) (1)
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where Eimage is the traditional single image segmentation term (single term) to
ensure the segment smoothness, and Eglobal is the multiple image term (global
term), which is to make the segments consistent with each other. The cosegmen-
tation is then achieved by minimizing (1). Since adding the global term usually
makes the energy minimization of (1) difficult, it is critical to design appropriate
single term and global term for easy optimization. In the existing methods, sev-
eral efficient single and global terms have been designed. For example, markov
random field segmentation [2, 4–6] , random walker segmentation [7], heat dif-
fusion segmentation [11, 12], and active contours segmentation have been used
for Eimage, while `1 norm [2], `2 norm [4] and reward measurement [5] have
been proposed for Eglobal to trade off between accurate foreground similarity
measurement and simple model minimization. In general, non-linear region sim-
ilarity measurement is more accurate to measure the foreground consistency, but
at cost of difficult energy minimization and local minimum solution. In contrast,
linear region similarity measurement can result in simple model optimization,
although it is not as accurate as the non-linear region similarity measurement.

Recently, more strategies have been introduced to evaluate the global term
Eglobal, such as the region similarity evaluation by clustering output [9, 13],
random forest based objectness evaluation model [14], the matric rank for scale
invariant objects [15], second order graph matching method [16], co-saliency
model [17], graph transduction learning [18] and consistent functional maps [19].
Note that these methods are still based on the model in (1). In other words,
they still focus on single image group cosegmentation, where the group level
information has not been explored.

There are a few cosegmentation methods that involve multiple image groups,
which partially motivated us. In particular, Kim et al. [20] proposed a web
photo streams based cosegmentation, which tries to extract common objects
from multiple web photo streams. Their method focuses on extracting multiple
classes of objects from streams by skillfully incorporating the photo storylines,
which can improve the classification accuracy via the iteration of segmentation
and classification. However, the method is essentially similar to combining the
photo streams into a single image group, which does not sufficiently use the group
level information in the cosegmentation. Meng et al. [21] recently proposed a
feature adaptive cosegmentation method, which tries to learn the feature model
adaptive to each image group using simple and complicated image subgroups.
Since it focuses on the feature learning, its cosegmentation is still within one
group.

3 Proposed Framework for Multiple Image Group
Cosegmentation

3.1 Problem Formulation

Denoting multiple image groups as Ii, we aim at extracting the common ob-
jects ωi

j from each given image Iij , where Iij refers to the j-th image in the
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i-th image group Ii. Without lose of generalization, let’s consider two image
groups for simplicity: I0 = {I01 , · · · , I0N0

} and I1 = {I11 , · · · , I1N1
}, where Ni is

the number of images in group i, i ∈ {0, 1}. Denoting w0 = {ω0
1 , · · · , ω0

N0
}

and w1 = {ω1
1 , · · · , ω1

N1
} as the set of the common object regions ωi

j , the goal

becomes extract w0 and w1 from I0 and I1, respectively.

As illustrated in Fig. 2, our basic idea is to combine the single-image consis-
tency, the single-group consistency and the multi-group consistency whenever it
is necessary so as to achieve better common object extraction. We formulate the
problem as an energy minimization problem with the overall energy function:

E =

1∑
i=0

αiEI(wi) + βiES(wi) + γiEM (wi,w1−i), (2)

where EI is the single image segmentation term that enforces foreground
and background to be smooth and discriminatory, ES is the single group term
that enforces the consistency between image pairs from the same group, EM is
the multiple group term that enforces the consistency between image pairs
from different image groups, and αi, βi and γi are tradeoff factors. In the fol-
lowing, we describe the three terms in detail.

......

Single Image Segmentation 

Multiple Group Segmentation Single Group Segmentation 

Fig. 2. Illustration of our main idea of combining single image segmentation, single
group segmentation and multiple group segmentation.

Single group term ES(wi). Given a foreground set wi with Ni foregrounds,
ES(wi) is used to evaluate the consistencies between its elements. Particularly,
in our model we evaluate the consistency by the sum of the similarities between
each pair of images, i.e.

ES(wi) =
∑

(k,l),k 6=l

zsg(k, l)S(ωi
k, ω

i
l) (3)
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with the similarity function defined as

S(ωi
k, ω

i
l) =

∑
p∈ωi

k

− log(P (p|Fωi
l
)), (4)

where P (p|Fωi
l
) is the probability of pixel p belonging to the Gaussian Mixture

Model (GMM) feature model Fωi
l

of foreground ωi
l , (k, l) represents foreground

pair (ωi
k, ω

i
l) in set wi, and zsg(k, l) is a hidden binary variable to indicate

whether ωi
k and ωi

l are paired or not with 1 for pairing and 0 for not pairing.
Note that (4) is essentially the GMM similarity measurement that has been
widely used in MRF models. There are also many other similarity measurements
such as `1-norm [2], `2-norm [4], which could also be adopted here. The reason
we choose the GMM similarity measurement is that it is a linear measurement,
which leads to simple energy minimization. The introduce of zsg(k, l) in (3) is to
create useful image pairs for consistency enforcement and avoid bringing in bad
image pairs that might deteriorate the performance. All these hidden variables
together form a matrix zsg with size Ni ×Ni.

Multiple group term EM (wi,w1−i). The multiple group term transfers fore-
ground information among the image groups. Here, we define it as

EM (wi,w1−i) =
∑
(k,l)

zsm(k, l)Sm(ωi
k, ω

1−i
l ), (5)

where (k, l) represents a foreground pair of (ωi
k, ω

1−i
l ) from the two different

foreground sets, zsm(k, l) is the hidden binary variable to indicate whether ωi
k

and ω1−i
l from different image groups are paired or not, similar to zsg(k, l),

and Sm is the similarity measurement between foreground pair (ωi
k, ω

1−i
l ). All

zsm(k, l) together form a matrix zsm with size Ni ×N1−i.
Different from the similarity measurement S defined in (4), for the image

pair similarity at group level we often want to transfer structure information
such as shape from one group (e.g. simple group) to the other (e.g. complex
group). Thus, we define the group-level similarity measurement as

Sm(ωi
k, ω

1−i
l ) =

∑
p∈ωi

k

‖f ik(p)− f1−il (p+ v(p))‖1, (6)

where f ik and f1−il are the features of image Iik and I1−il , respectively, p+v(p) is
a pixel in image I1−il corresponding to pixel p in image Iik, and v(p) is the flow
vector of pixel p. We use the SIFT flow method [22] to obtain the flow vector
set v. The feature f ik could be SIFT, color, or other features, depending on the
applications.

Single image term EI(wi). Single image term is to ensure the smoothness of
the segmentation and the distinction of the foreground and the background.
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Following common MRF segmentation model, EI(wi) is defined as

EI(wi) =

Ni∑
k=1

S(ωi
k, ω

i
k) + S(ω̄i

k, ω̄
i
k) + V (ωi

k) (7)

where S is the same as that in (4), ω̄i
k = {p|p ∈ Ωi

k, p /∈ ωi
k} is the background,

Ωi
k is the pixel set of image Iik, and V (ωi

k) is the smoothness term regularizing
the segment mask ωi

k. We select V as the pairwise term in the common MRF
segmentation model [2]. The first two terms in (7) are essentially the data terms,
respectively measuring how well foreground and background pixels match the
foreground and background GMM feature models of the image itself.

3.2 Optimization Solution

We now present our solution to the optimization problem of (2). Considering
there are hidden variables in (2), we adapt the EM to find the solution, which
consists of two alternatively iterative steps: E-step and M-step. In the E-step,
we update the hidden variables zisg and zism based on the feature consistency of
the segments, while in the M-step we refine the segments based on the updated
hidden variables. In the following, we describe the two steps in detail.

E-step: updating z. In the E-step, we update z by the K nearest-neighbor
search. Given the segmentation results in the t-th iteration, we represent each
segment by a feature such as color or SIFT. Then, for each segment ω, we
calculate its K nearest neighbors denoted as N(ω). For a segment pair (ω and
ωk), we set the corresponding hidden variable z = 1 if ωk ∈ N(ω); otherwise,
z = 0. In this way, we update zsg and zsm respectively when the images are in
the same group or different groups.

The nearest neighbors are usually searched based on a certain distance metric
such as Euclidean distance or Qi-square distance. We observe that these distances
may not handle the region interferences very well. For example, in Fig.3(a), the
current foreground contains A+B, where A is the object region we want while
B is the noise region. Directly using those common distance metrics might find
the nearest neighbors that contain both A and B such as Fig.3(b) and exclude
the ideal neighbors such as Fig.3(c). To avoid such cases, we define the region
distance between two foregrounds as

D(ω, ωk) =
1

|ωk|
∑
q∈ωk

min
p∈ω

d(f(p), f(q)), (8)

where f(p) is the feature representation of pixel p and d is the Euclidean distance.
In this way, the foreground in Fig. 3(c) will have a small distance to that in Fig.
3(a). To speed up the process, we compute the distance in (8) based on the
segment (superpixel) obtained by the simple linear iterative clustering (SLIC)
superpixel generation method [23] (with the pixel number 300).
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(a) (b) (c)

Fig. 3. An example of foreground distance measurement for K nearest-neighbor search.

M-step: refining cosegmentation. In the M-step, we fix zsg and zsm, and
want to refine w0 and w1 by minimizing (2). However, directly minimizing (2)
is difficult since it involves two image groups and each image group contains
multiple images. To make the problem trackable, we propose to solve each image
segmentation separately by fixing the foregrounds of other images as constants.
In this way, we divide the minimization problem into many sub-minimization
problems. The energy function of each sub-minimization problem becomes

Ei
k = αi[S(ωi

k, ω
i
k) + S(ω̄i

k, ω̄
i
k) + V (ωi

k)]

+βi
∑
l,l 6=k

zisg(k, l)S(ωi
k, ω

i
l) + γi

∑
l

zism(k, l)Sm(ωi
k, ω

1−i
l ). (9)

Since the similarity measurements S and Sm are designed as linear measurement,
the energy in (9) is submodular. Hence, (9) can be efficiently minimized by the
classical graphcut algorithm [24]. By solving the sub-minimization problem in (9)
one by one, we then update all ωi

j .

Overall algorithm. Alg. 1 summarizes the proposed EM based solution. Note
that the input includes two 2×2 matrices M1 and M2, which are used to specify
the propagation relationship and the similarity features used so as to accommo-
date different application scenarios. Specifically, if we want to use the foreground
information of the j-th group for the cosegmentation of the i-th group, we set
M1(i, j) = 1; otherwise, we set M1(i, j) = 0. The diagonal elements M1(i, i) are
always set to 1. M2 is used to specify the features used in the propagation. In
this research, we mainly consider color and SIFT features. We set M2(i, j) to 0 or
1 to respectively indicate color or SIFT feature used in the information transfer
from group j to group i. Note that M2(i, i) specifies the transfer feature used
within group i. Based on M1 and M2, we can easily design the transfer direction
and the corresponding feature used in the transfer.

For the initialization, we set the initial region wi
0, i = 1, 2 as the rectangles

with a fixed distance of 0.1×W (W is the image width) to the image boundary.
z0sg is set as zero matrix with one on the diagonal, and z0sm is set as zero matrix.
The M-step and E-step are run iteratively until the stop condition is met, i.e.
reaching the maximum number of iterations Nstop. Typically, the EM algorithm
converges in four iterations and thus we set Nstop = 4.
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Algorithm 1 Proposed multiple group cosegmentation.

Input:
Two image groups I0 and I1

The relationship matrix M1 and M2.
Output:

The common foreground region sets w0 and w1.
1: Setting iteration t = 1, the initial segments wi

t, i = 0, 1, ztsg and ztsm;
2: while t ≤ Nstop do
3: // M-step
4: for each image Iij in Ii, i = 0, 1 do
5: Based on wi

t, i = 0, 1, ztsg and ztsm, update ωi
j for wi

t+1 by minimizing (9);
6: end for
7: // E-step
8: Based on wi

t+1, i = 0, 1, update zt+1
sg and zt+1

sm ;
9: t = t + 1;

10: end while
11: return wi

t+1, i = 0, 1;

4 Experiments

In this section, we verify the proposed method via three cosegmentation appli-
cations: image complexity based group cosegmentation, multiple training group
cosegmentation and multiple noise image group cosegmentation. We use four
benchmark datasets, including ICoseg [25], Caltech-UCSD Birds 200 [26], Cat-
Dog [27] and Noise Image dataset [28].

4.1 Image Complexity Based Group Cosegmentation

Here, we consider the scenario of extracting a common object from a given
single image group with large number of images, where some images are of
simple background while others have complex background, which are difficult
to segment. Following the image complexity analysis in [21], we can divide the
given image group into simple image group and complex image group. For simple
image group, we can easily extract the object out by using the single image
group cosegmentation (setting γi in (2) to 0). Then, for the complex image
group we perform the multiple image group cosegmetnation using our proposed
framework, where the prior information generated from the simple image group
is transferred to help the complex image group cosegmentation.

We test this scenario on the ICoseg dataset [25]. Color feature is selected for
information transfer between the simple group and the complex group. Fig 4
shows some segmentation results of the images with complex backgrounds from
the three classes cheetah, elephant and panda2. We can see that the proposed
method can extract the common objects from interfered backgrounds, which is
largely due to the accurate object prior provided by the simple group.

We next objectively evaluate the proposed method by IOU value, which is
defined as the ration of the intersection area of the segment and the groundtruth
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Fig. 4. The segmentation results of the proposed method on ICoseg dataset.

to their union. We use the average value of the IOU results over all the classes
of the ICoseg dataset to verify the performance. The average IOU values of
the proposed method and the existing methods on ICoseg dataset are shown
in the second column of Table 1, where we also compare the methods of our
framework without and with the multiple group term, denoted as ours+s and
ours+m, respectively. It can be seen that our proposed method with the multiple
group term achieves the best performance with the highest IOU value of 0.7086
on the ICoseg dataset. Note that some image classes in ICoseg only contain
small number of images (smaller than ten), which is not suitable for simple and
complex group division. Thus, for these small classes, only single image group
cosegmentation of the proposed method is performed.

Table 1. The IOU values (Precision value for the Noise Image dataset) of the proposed
method and the existing methods on Icoseg, Bird, Cat-Dog and Noise Image dataset.

Method Icoseg Bird Cat Noise

[9] 0.3947 0.2340 – 0.5270
[11] 0.3927 0.1806 0.4534 0.4695
[13] 0.4264 0.2384 – 0.6168
[28] 0.6763 0.2480 0.3950 0.5892

Ours+s 0.6514 0.3897 0.6235 –
Ours+m 0.7086 0.3957 0.6550 0.8627

Fig. 5 further gives some visual comparison among different methods. We can
see that the results of the single group based method often obtain large noise
regions, such as the meadow in the Liverpool class (the first two columns). This
is mainly because these noise regions repeatedly appear in the image group,
which are then being considered as part of the foregrounds. Compared with
other methods, our proposed group-level cosegmentation method can successfully
remove those noise regions due to the nice prior extracted from the simple image
group.
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Fig. 5. From top to bottom: the original images, the segmentation results of [13], [28],
ours+s and ours+m methods.

4.2 Multiple Training Group Cosegmentation

In this subsection, we consider the scenario of given a training collection of a
general object such as bird or cat, where there already exists some groupings
according to the type of the species. Some subspecies can be easily extracted
according to a certain feature while segmenting the others is challenging due to
the complicated texture of the object. For such dataset, we apply the single-
group image cosegmentation (ours+s) using either color or SIFT feature on one
selected group that can be easily segmented, and then apply our multi-group
image cosegmentation (ours+m) on other groups using SIFT feature to transfer
the object prior from the easy group to each of the other groups.

For this scenario, we test the proposed method on two classification datasets:
Cat-Dog dataset and Caltech-UCSD Bird dataset. The Cat-Dog dataset contains
12 subspecies of cat with about 200 images per class, and we use all the classes.
In Bird dataset, there are 200 species of bird with about 30 images per class. We
select 13 continuous classes from number 026 (Bronzed Cowbird) to 038 (Great
Crested Flycatcher) for verification. Considering some easy group has relative-
ly large number of images, when applying the multi-group cosegmentation, the
image matching between groups becomes very time-consuming. In order to re-
duce the computational cost, only a subset of the images with small number of
images is used as the easy group to help cosegment other groups. Specifically,
in the Cat-Dog dataset, Bombay cat group with 23 images is used as the easy
group, and for UCB-Bird dataset, we select a subset of 029 American Crow with
18 images as the easy group.

Fig. 6 and Fig. 7 show the segmentation results of some difficult groups in
the Cat-Dog dataset and the Bird Dataset using our proposed method. Here, we
give examples of the images with interfered backgrounds. We can see that the
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proposed method can locate the objects from these complicated backgrounds,
such as the cat in the indoor scene.

Fig. 6. The segmentation results of some difficult groups in Cat-Dog dataset using our
proposed method.

Fig. 7. The segmentation results of some difficult groups in Bird dataset using our
proposed method.

The IOU values of ours method Ours+m, Ours+s and the existing methods
on these two datasets are shown in the fourth and fifth columns in Table 1.
Again, the proposed multi-group cosegmentation achieves the best performance.
Meanwhile, we can see the significant improvement of cosegmentation is mainly
caused by our single group version. The reason is that we use several new strate-
gies to improve the single image group cosegmentation performance, such as the
dynamic re-neighboring across images, new neighbor selection method and si-
multaneously considering the segmentation on multiple image and single image.
These strategies are able to result in the significant improvement of cosegmenta-
tion, especially when the dataset is challenging (such as Bird and Cat with the
IOU values of 0.24 and 0.45, respectively). Meanwhile, it can also be seen that
our multiple group version can further improve the IOU values over the single
group version.

4.3 Noise Image Based Cosegmentation

In this experiment, we intend to demonstrate that our multi-group cosegmen-
tation can help on removing noise or irrelevant images from a given internet
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image collection of a general object that for example could be the search results
of multiple search engines, such as Google and Bing. We can divide the image
collection into multiple groups according to its sources, i.e. where an image is
coming from. By assuming the noise images are different from different sources,
we can easily remove the noise images in one group by checking whether the
noise images appear in another group or not. Such a noise removing method is
much simpler than the one proposed in [28].

For demonstration purpose, we construct a noise dataset from the one in [28]
to illustrate our idea. Specifically, we add different objects into a common object
image set so as to form two different groups. For example, we respectively add a
number of face and bird images into the car image set to form two different car
groups. Note that for each group, we allow the repetition of the noise images,
which cannot be handled by [28].

Some example results of the proposed method are shown in Fig. 8, where the
top and bottom rows correspond to the results of the two different groups. We
can see that the proposed method can delete the noise images successfully, as
evident by no segmentation mask in those noise images. Since it is not meaningful
to calculate IOU with empty segmentation mask, here we use the precision value
as the evaluation metric, which is defined as the ratio of the number of correctly
labelled pixels to the total number of pixels. The precision results of the proposed
method are given in the last column of Table 1, which shows the significant
improvement by using the proposed multiple group cosegmentation.

Fig. 8. The segmentation results of the proposed method on the Noise image dataset.
Note that the noise images are identified in the cosegmentation since they have no
segmentation masks.

5 Conclusion

In this paper, we have proposed a multi-group image cosegmentation framework,
which is formulated as an energy minimization problem. The proposed energy
model consists of three terms: the single image segmentation term, the single
group term and the multiple group term, which, together with the hidden vari-
ables, can effectively ensure the right consistency to be enforced within an image,
within a group and across different groups. The proposed model is minimized
by the EM algorithm incorporated with the adopted K-nearest neighbor search
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and the graphcut algorithm. The experiments on three practical cosegmenta-
tion tasks and four benchmark image datasets have clearly demonstrated the
usefulness and powerfulness of utilizing inter-group information.
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